Pour le processus d’évaporation par résistance électrique, nous produisons des nacelles d’évaporation en tungstène, molybdène, molybdène-lanthane (ML), oxyde de molybdène-yttrium (MY) ou tantale. Placées sous courant électrique, nos navettes chauffent la matière à évaporer. Les faibles pressions de vapeur de nos métaux garantissent qu’aucune particule de tungstène, de tantale ou de molybdène ne pénètre dans la vapeur et la couche suivante.
Excellente résistance
à la corrosion
Faibles pressions de vapeur
Bonne conductivité électrique
Point de fusion très élevé
Stabilité dimensionnelle
L’évaporation sous vide thermique (évaporation par résistance) est une méthode de revêtement qui fait partie des procédés PVD (Physical Vapour Deposition). Le matériau de la dernière couche est chauffé dans une chambre sous vide jusqu’à ce qu’ils s’évapore.
Lors du processus d’évaporation sous vide, des revêtements résistants sont créés à partir d’aluminium, d’argent, de chrome, de nitrure de titane ou de silice, par exemple. Le résultat : des montres brillantes, des miroirs impeccables et des composants électroniques de grande qualité. Laissez-vous convaincre par la longue durée de service et la grande précision dimensionnelle de nos nacelles d’évaporation.
Nous fabriquons des nacelles d’évaporation en molybdène, tungstène et tantale pour votre application :
Nacelles d’évaporation en tungstène
Le tungstène est très résistant à la corrosion de nombreux métaux fondus et très résistant à la chaleur, avec le point de fusion le plus élevé de tous les métaux. Grâce à des dopants spéciaux tels que le silicate de potassium, nous rendons le matériau encore plus résistant à la corrosion et stable sur le plan dimensionnel.
Nacelles d’évaporation en molybdène
Le molybdène est un métal particulièrement stable et adapté aux hautes températures. Dopé à l’oxyde de lanthane (ML), le molybdène devient encore plus ductile et résistant à la corrosion. Avec l’oxyde d’yttrium (MY), nous améliorons l’usinabilité mécanique du molybdène
Nacelles d’évaporation en tantale
Le tantale présente une faible pression de vapeur et un taux d’évaporation bas. Ce matériau finira toutefois de vous convaincre grâce à sa grande résistance à la corrosion.
Straight type – Nacelles en conception droite
Step type – Nacelles avec palier entre la partie de serrage et la partie supérieure
Non splash type – Nacelles avec des battants ou un couvercle pour minimiser les éclaboussures
Eine Übersicht der passenden Schiffchen für Ihr Material finden Sie hier. Schiffchen mit einem Plus eignen sich für das Material. Schiffchen mit zwei Plus empfehlen wir Ihnen ganz besonders. Gerne helfen wir Ihnen auch persönlich bei der Materialauswahl.
Beschichtungsmaterial | Dichte [g/cm³] |
Schmelzpunkt [°C] |
Siedepunkt [°C] |
Schiffchen | ||
W | Mo | Ta | ||||
Al | 2.7 | 660 | 2467 | + | ||
AIF3 | 2.9 | 1291 | N/A | ++ | ++ | |
AI/1 – 4% Cu | 2.7 | 650 | N/A | + | ||
AI/0.1 – 2% Si | 2.7 | 640 | N/A | + | ||
AI/4% Cu/1% Si | 2.7 | 640 | N/A | + | ||
Ag | 10.5 | 961 | 2212 | ++ | ++ | |
As2S3 | 3.4 | 300 | 707 | ++ | ||
Au | 19.3 | 1063 | 2966 | ++ | + | |
B2O3 | 2.5 | 460 | 2247 | ++ | ||
BaF2 | 4.9 | 1280 | 2260 | ++ | ++ | ++ |
BaTiO3 | 6.0 | 1600 | N/A | + | + | |
BeO | 3.0 | 2530 | 4120 | + | ||
Bi | 9.8 | 271 | 1560 | ++ | ++ | ++ |
BiF3 | 5.3 | 727 | 900 | ++ | ++ | |
Bi2O3 | 8.9 | 820 | 1890 | + | + | |
CaF2 | 3.2 | 1360 | 2500 | ++ | ++ | ++ |
CaO | 3.3 | 2580 | 2850 | + | ||
Cd | 8.6 | 321 | 765 | ++ | ++ | ++ |
CdSe | 5.8 | 1350 | N/A | ++ | ++ | |
CdS | 4.8 | 1750 | 1405 | ++ | ++ | ++ |
CdTe | 6.2 | 1042 | N/A | ++ | ++ | |
CeO2 | 7.1 | 2150 | N/A | ++ | ||
CeF3 | 6.2 | 1460 | 1987 | ++ | ++ | |
Co | 8.9 | 1495 | 2900 | + | ++ | |
Cr | 7.2 | 1875 | 2482 | ++ | ||
Cr2C3 | 6.7 | 1850 | 3800 | + | ||
Cr2C3 | 5.2 | 2345 | 4000 | + | ||
Cu | 8.9 | 1083 | 2595 | ++ | ||
Cu2O | 6.0 | 1235 | 1800 | + | ||
DyF3 | 7.5 | 1155 | 1900 | ++ | ||
ErF3 | 7.8 | 1144 | 1920 | ++ | ||
Er2O3 | 8.6 | 2400 | N/A | + | ||
EuF3 | 6.7 | 1280 | 2270 | + | ||
Eu2O3 | 7.4 | 2100 | N/A | + | ||
Fe | 7.9 | 1536 | 3070 | + | ||
Fe2O3 | 5.3 | 1594 | N/A | + | ||
Ga | 5.9 | 30 | 2403 | + | ||
GaAs | 5.3 | 1238 | N/A | ++ | ||
GaP | 4.1 | 1350 | N/A | ++ | ++ | ++ |
Ge | 5.4 | 937 | 2830 | + | ||
GeO2 | 4.2 | 1115 | N/A | ++ | ++ | ++ |
HfF2 | 7.1 | 1000 | N/A | ++ | ||
HoF3 | 7.6 | 1143 | 1895 | ++ | ||
In | 7.3 | 156 | 2000 | ++ | ++ | |
In/10Sn | 7.3 | 146 | 1000 | + | ||
In2O3 | 7.2 | 2200 | N/A | + | + | |
LaF3 | 6.0 | 1495 | 2400 | ++ | ++ | |
La2O3 | 6.5 | 2260 | 4200 | + | + | |
LiF | 2.6 | 842 | 1676 | ++ | ++ | |
LuF3 | 8.3 | 1182 | 2200 | ++ | ++ | |
Lu2O3 | 9.4 | 2400 | N/A | + | ++ | |
Mg | 1.7 | 650 | 1107 | ++ | ++ | ++ |
MgF2 | 3.1 | 1266 | 2239 | ++ | ||
MgO | 3.6 | 2640 | 3600 | + | ||
Mn | 7.4 | 1245 | 2097 | + | ++ | ++ |
MnS | 4.0 | 1615 | N/A | + | + | |
MoO3 | 4.7 | 795 | 1155 | ++ | ||
MoS2 | 4.8 | 1185 | N/A | ++ | ||
Na3AIF6 | 2.9 | 1000 | N/A | ++ | ++ | |
Na5AI3F14 | 3.0 | 1027 | N/A | ++ | ++ | |
NaF | 2.6 | 988 | 1695 | ++ | ++ | ++ |
NdF3 | 6.5 | 1377 | 2400 | ++ | ++ | |
Nd2O3 | 7.2 | 2240 | N/A | + | ||
Ni | 8.9 | 1453 | 2732 | + | ||
Ni/Cr | 7.5-8.5 | 1500 | N/A | + | ||
Nb | 8.6 | 2468 | 4927 | + | ||
Nb2O5 | 4.5 | 1512 | N/A | + | ||
Pd | 12.0 | 1552 | 2927 | + | ||
Pt | 21.5 | 1769 | 3827 | + | ||
PrF3 | 6.3 | 1399 | 2255 | ++ | ++ | |
Pr2O3 | 7.1 | 2270 | N/A | + | ||
Rb | 1.5 | 39 | 688 | + | ||
SmF2 | 6.6 | 1306 | 2323 | ++ | ||
Sm2O3 | 7.1 | 2325 | N/A | + | ||
ScF3 | 2.6 | 1530 | 1800 | ++ | ||
Sc2O3 | 3.9 | 2400 | N/A | + | ||
Se | 4.8 | 217 | 685 | + | + | + |
Si | 2.3 | 1410 | 2355 | + | ||
SiO | 2.1 | 1705 | 1880 | ++ | ++ | |
Sn | 7.3 | 232 | 2260 | ++ | ++ | |
SnO2 | 6.9 | 1127 | 1850 | + | + | |
SrF2 | 4.2 | 1450 | 2489 | ++ | ++ | |
Ta2O5 | 8.3 | 1880 | N/A | + | ||
Te | 6.2 | 450 | 1390 | ++ | ++ | ++ |
TbF3 | 7.2 | 1172 | 2280 | + | ||
Tb2O3 | 7.9 | 2300 | N/A | + | + | |
ThF4 | 6.3 | 1100 | 1680 | ++ | ++ | |
Ti | 4.5 | 1668 | 3260 | + | ||
TiO2 | 4.2 | 1775 | 2700 | + | ||
TiO | 4.9 | 1750 | 3000 | ++ | ||
Ti2O3 | 4.6 | 1760 | N/A | ++ | ||
V | 6.1 | 1900 | 3410 | + | + | |
WO3 | 7.2 | 1473 | N/A | ++ | ||
Y | 4.5 | 1509 | 2927 | ++ | ||
YF3 | 5.1 | 1155 | 2210 | ++ | ||
YbF3 | 8.2 | 1157 | 2136 | ++ | ++ | |
Yb2O3 | 9.2 | 2346 | N/A | + | ||
Zn | 7.1 | 420 | 907 | ++ | ++ | ++ |
ZnSe | 5.4 | 1526 | N/A | ++ | ++ | ++ |
ZnS | 4.1 | 1850 | 1665 | ++ | ++ | |
ZnTe | 5.5 | 1238 | N/A | ++ | ++ | |
Zr | 6.5 | 1852 | 3578 | + | ||
ZrF4 | 4.4 | 600 | 908 | ++ | ||
ZrO2 | 5.6 | 2700 | 4300 | + | ||
ZrO | 6.4 | 2200 | N/A | ++ |
Vous trouverez les mesures et les dimensions exactes sur notre boutique :
Nos matériaux pour les nacelles d’évaporation ont des taux d’évaporation très bas à la température d’évaporation et une pression de vapeur extrêmement faible par rapport aux matériaux de revêtement. Aucune particule de matière de la nacelle ne pénètre ainsi dans votre revêtement, même en cas de longs cycles d’évaporation.
Une résistance électrique spécifique est un paramètre important pour la conception des nacelles d’évaporation.
Pour plus d’informations sur nos nacelles d’évaporation en tungstène, molybdène et tantale, veuillez vous reporter à la référence de l’article. Il est composé comme suit :
Nous proposons des inserts de creuset en molybdène, tungstène et tantale pour l’évaporation par faisceau d’électrons. Contrairement aux creusets en cuivre et en graphite, ils ne contamineront pas votre matériel d’évaporation. Nous optimisons volontiers la géométrie et la composition des matériaux de nos creusets pour les adapter à votre procédé de revêtement.
Nos filaments de tungstène et de molybdène sont utilisés pour l’évaporation par résistance électronique.