Para la evaporación por resistencia, suministramos navetas hechas de tungsteno, molibdeno, molibdeno-lantano (ML), molibdeno-óxido de itrio (MY) o tántalo. Una vez en funcionamiento, nuestras navetas calientan el material para su evaporación. Durante el proceso, la baja presión del vapor de nuestros materiales garantizan que ninguna partícula de tungsteno, tántalo o molibdeno penetre en el vapor y se quede en el recubrimiento.
Excelente protección
contra la corrosión
Baja presión del vapor
Buena conductividad eléctrica
Punto de fusión muy elevado
Estabilidad dimensional
La vaporización en vacío (evaporación por resistencia) es un método de recubrimiento utilizado como parte del proceso de PVD (del inglés Physical Vapour Deposition; deposición física de vapor). El material que formará el recubrimiento se calienta en una cámara de vacío hasta que se evapora.
En el proceso de vaporización en vacío se generan capas resistentes, por ejemplo de aluminio, plata, cromo, nitruro de titanio o dióxido de silicio. El resultado: relojes brillantes, espejos perfectos y componentes electrónicos de máxima calidad. Puede contar con una larga vida útil y un alto nivel de precisión dimensional de nuestras navetas de evaporación.
Fabricamos navetas de evaporación hechas de molibdeno, tungsteno y tántalo:
Navetas de evaporación de tungsteno
El tungsteno es extremadamente resistente a la corrosión en contacto con multitud de metales fundidos y, al tener el más elevado punto de fusión de todos los metales, ofrece una extraordinaria resistencia al calor. Utilizamos aditivos dopantes especiales como el silicato de potasio para hacer el material aún más resistente a la corrosión y a la deformación.
Navetas para evaporación de molibdeno
El molibdeno es un metal especialmente estable que también es apropiado para su uso a altas temperaturas. Si se dopa con óxido de lantano (ML), el molibdeno se vuelve aún más dúctil y resistente a la corrosión. Añadiendo óxido de itrio (MY) se mejora la mecanizabilidad del material
Navetas de evaporación de tántalo
El tántalo tiene una presión de vapor muy baja y se evapora muy lentamente. Sin embargo, la gran fortaleza de este material reside en su extraordinaria resistencia a la corrosión.
Straight type: Navetas de diseño plano
Step type: Navetas con escalón entre la parte de sujeción y la parte superior
Non splash type: Navetas con cubierta o protección para minimizar las salpicaduras
Eine Übersicht der passenden Schiffchen für Ihr Material finden Sie hier. Schiffchen mit einem Plus eignen sich für das Material. Schiffchen mit zwei Plus empfehlen wir Ihnen ganz besonders. Gerne helfen wir Ihnen auch persönlich bei der Materialauswahl.
Beschichtungsmaterial | Dichte [g/cm³] |
Schmelzpunkt [°C] |
Siedepunkt [°C] |
Schiffchen | ||
W | Mo | Ta | ||||
Al | 2.7 | 660 | 2467 | + | ||
AIF3 | 2.9 | 1291 | N/A | ++ | ++ | |
AI/1 – 4% Cu | 2.7 | 650 | N/A | + | ||
AI/0.1 – 2% Si | 2.7 | 640 | N/A | + | ||
AI/4% Cu/1% Si | 2.7 | 640 | N/A | + | ||
Ag | 10.5 | 961 | 2212 | ++ | ++ | |
As2S3 | 3.4 | 300 | 707 | ++ | ||
Au | 19.3 | 1063 | 2966 | ++ | + | |
B2O3 | 2.5 | 460 | 2247 | ++ | ||
BaF2 | 4.9 | 1280 | 2260 | ++ | ++ | ++ |
BaTiO3 | 6.0 | 1600 | N/A | + | + | |
BeO | 3.0 | 2530 | 4120 | + | ||
Bi | 9.8 | 271 | 1560 | ++ | ++ | ++ |
BiF3 | 5.3 | 727 | 900 | ++ | ++ | |
Bi2O3 | 8.9 | 820 | 1890 | + | + | |
CaF2 | 3.2 | 1360 | 2500 | ++ | ++ | ++ |
CaO | 3.3 | 2580 | 2850 | + | ||
Cd | 8.6 | 321 | 765 | ++ | ++ | ++ |
CdSe | 5.8 | 1350 | N/A | ++ | ++ | |
CdS | 4.8 | 1750 | 1405 | ++ | ++ | ++ |
CdTe | 6.2 | 1042 | N/A | ++ | ++ | |
CeO2 | 7.1 | 2150 | N/A | ++ | ||
CeF3 | 6.2 | 1460 | 1987 | ++ | ++ | |
Co | 8.9 | 1495 | 2900 | + | ++ | |
Cr | 7.2 | 1875 | 2482 | ++ | ||
Cr2C3 | 6.7 | 1850 | 3800 | + | ||
Cr2C3 | 5.2 | 2345 | 4000 | + | ||
Cu | 8.9 | 1083 | 2595 | ++ | ||
Cu2O | 6.0 | 1235 | 1800 | + | ||
DyF3 | 7.5 | 1155 | 1900 | ++ | ||
ErF3 | 7.8 | 1144 | 1920 | ++ | ||
Er2O3 | 8.6 | 2400 | N/A | + | ||
EuF3 | 6.7 | 1280 | 2270 | + | ||
Eu2O3 | 7.4 | 2100 | N/A | + | ||
Fe | 7.9 | 1536 | 3070 | + | ||
Fe2O3 | 5.3 | 1594 | N/A | + | ||
Ga | 5.9 | 30 | 2403 | + | ||
GaAs | 5.3 | 1238 | N/A | ++ | ||
GaP | 4.1 | 1350 | N/A | ++ | ++ | ++ |
Ge | 5.4 | 937 | 2830 | + | ||
GeO2 | 4.2 | 1115 | N/A | ++ | ++ | ++ |
HfF2 | 7.1 | 1000 | N/A | ++ | ||
HoF3 | 7.6 | 1143 | 1895 | ++ | ||
In | 7.3 | 156 | 2000 | ++ | ++ | |
In/10Sn | 7.3 | 146 | 1000 | + | ||
In2O3 | 7.2 | 2200 | N/A | + | + | |
LaF3 | 6.0 | 1495 | 2400 | ++ | ++ | |
La2O3 | 6.5 | 2260 | 4200 | + | + | |
LiF | 2.6 | 842 | 1676 | ++ | ++ | |
LuF3 | 8.3 | 1182 | 2200 | ++ | ++ | |
Lu2O3 | 9.4 | 2400 | N/A | + | ++ | |
Mg | 1.7 | 650 | 1107 | ++ | ++ | ++ |
MgF2 | 3.1 | 1266 | 2239 | ++ | ||
MgO | 3.6 | 2640 | 3600 | + | ||
Mn | 7.4 | 1245 | 2097 | + | ++ | ++ |
MnS | 4.0 | 1615 | N/A | + | + | |
MoO3 | 4.7 | 795 | 1155 | ++ | ||
MoS2 | 4.8 | 1185 | N/A | ++ | ||
Na3AIF6 | 2.9 | 1000 | N/A | ++ | ++ | |
Na5AI3F14 | 3.0 | 1027 | N/A | ++ | ++ | |
NaF | 2.6 | 988 | 1695 | ++ | ++ | ++ |
NdF3 | 6.5 | 1377 | 2400 | ++ | ++ | |
Nd2O3 | 7.2 | 2240 | N/A | + | ||
Ni | 8.9 | 1453 | 2732 | + | ||
Ni/Cr | 7.5-8.5 | 1500 | N/A | + | ||
Nb | 8.6 | 2468 | 4927 | + | ||
Nb2O5 | 4.5 | 1512 | N/A | + | ||
Pd | 12.0 | 1552 | 2927 | + | ||
Pt | 21.5 | 1769 | 3827 | + | ||
PrF3 | 6.3 | 1399 | 2255 | ++ | ++ | |
Pr2O3 | 7.1 | 2270 | N/A | + | ||
Rb | 1.5 | 39 | 688 | + | ||
SmF2 | 6.6 | 1306 | 2323 | ++ | ||
Sm2O3 | 7.1 | 2325 | N/A | + | ||
ScF3 | 2.6 | 1530 | 1800 | ++ | ||
Sc2O3 | 3.9 | 2400 | N/A | + | ||
Se | 4.8 | 217 | 685 | + | + | + |
Si | 2.3 | 1410 | 2355 | + | ||
SiO | 2.1 | 1705 | 1880 | ++ | ++ | |
Sn | 7.3 | 232 | 2260 | ++ | ++ | |
SnO2 | 6.9 | 1127 | 1850 | + | + | |
SrF2 | 4.2 | 1450 | 2489 | ++ | ++ | |
Ta2O5 | 8.3 | 1880 | N/A | + | ||
Te | 6.2 | 450 | 1390 | ++ | ++ | ++ |
TbF3 | 7.2 | 1172 | 2280 | + | ||
Tb2O3 | 7.9 | 2300 | N/A | + | + | |
ThF4 | 6.3 | 1100 | 1680 | ++ | ++ | |
Ti | 4.5 | 1668 | 3260 | + | ||
TiO2 | 4.2 | 1775 | 2700 | + | ||
TiO | 4.9 | 1750 | 3000 | ++ | ||
Ti2O3 | 4.6 | 1760 | N/A | ++ | ||
V | 6.1 | 1900 | 3410 | + | + | |
WO3 | 7.2 | 1473 | N/A | ++ | ||
Y | 4.5 | 1509 | 2927 | ++ | ||
YF3 | 5.1 | 1155 | 2210 | ++ | ||
YbF3 | 8.2 | 1157 | 2136 | ++ | ++ | |
Yb2O3 | 9.2 | 2346 | N/A | + | ||
Zn | 7.1 | 420 | 907 | ++ | ++ | ++ |
ZnSe | 5.4 | 1526 | N/A | ++ | ++ | ++ |
ZnS | 4.1 | 1850 | 1665 | ++ | ++ | |
ZnTe | 5.5 | 1238 | N/A | ++ | ++ | |
Zr | 6.5 | 1852 | 3578 | + | ||
ZrF4 | 4.4 | 600 | 908 | ++ | ||
ZrO2 | 5.6 | 2700 | 4300 | + | ||
ZrO | 6.4 | 2200 | N/A | ++ |
Puede encontrar las medidas y dimensiones exactas en nuestra tienda:
Nuestros materiales para navetas tienen índices de evaporación bajos a la temperatura de evaporación y una presión de vapor extremadamente baja en comparación con los materiales de recubrimiento. Como resultado, no se introduce material de las navetas en la capa de recubrimiento, ni siquiera en ciclos de evaporación largos.
La resistencia eléctrica específica es un factor importante a la hora de definir la naveta de evaporación.
El número de referencia de las navetas de evaporación de tungsteno, molibdeno o tántalo se refiere al modelo exacto de naveta. Se encuentra de la siguiente forma:
Suministramos insertos de crisoles de molibdeno, tungsteno y tántalo para su uso en evaporación por haz de electrones. Al contrario que los crisoles de cobre o grafito, estos no contaminan el material de evaporación. Nos encantará optimizar la geometría y la composición de nuestros crisoles para adaptarlo a su proceso de recubrimiento.
Nuestros filamentos de tungsteno y molibdeno se usan en la evaporación por resistencia.